
7AD-A1216 825 N ARCHITECTURAL REFERENCE 
MODEL FOR DISTRIBUTED 

i/i
DBMS/FILE SYSTEM ENYIRONMENTSCU) BGS SYSTEMS INC

U AS I WALTHAM MA P S MARGER ET AL. SEP 88 TR-80-8±8

UNCLASSIFIED F/G 9/2 N



S1.0 bi Q-8 32.5

III " 5 0 llllill -_ 1.811 1.25 11111.4 111.
111W 

1126

MICROCOPY RESOLUTION TEST CHARTNATIONAL BUREAU OF STANDARDS.19
6 3 -A



SECURITY CLASSIFICATION OF THIS PAUL fil4DWj ~a '1ge1

REPORT DOCUMENTATION PAGE "I[A 'SIIWIM

1. RKIN NUBER2. GOVT ACCESSION ;0l 3 RECIPIENI £ CATALOG NUMBER

. OttL" LnSSftf

A. TTLEI& AW*S. TYPE of REPORT IPER=O COVERED

An ArchitecVtra1 Reference Model for Distributed
DBMS/Fih t Environments

6. PERFORIN~G ONG. REPORT "WMER

7. AUHOR11) 111 CONTRACT OR GRANT NUM11110110

Peter S. Mager
Robert P. Goldberg~

9. PERIORMING ORGANIZATION NAME AND ADORES 10. PROGAM. L1LEMENT. PROJECT. TASK
AREA F. VORK UNIT NUMBERS

BGS Systems, Inc.
Waltham, MA 02154

11 CONTROLLING OFFICE NAME AND ADDRESS I? REPnRT DATE

NUSC - New London Laboratory September, 1980
New London, CT 13 FjIJAA&I Of OFPAE

14. MONITORING AGENCY NAME II ADDRESS (ef Idiftwot frum Co""il""'j Offstr 15. SE(CIRITY C'.ASS fo-.4 ng vto

Unclassified

151 OECLASSIF ICA TIONOOWNGRAOING
SC HFDIULE

16. DISTRIBUTION STATEMENT 10f th-s Ro-port)

Unlimited I

17. DISTRIBUTION STATEMENT (of the abstrict entetedw OvsBck 23. If dl,'(efn flrg, R.5'.2t ELE C
MAR 2 41983

SS

19 KEY WORDS 1COMt~ue "IW O ine jf MAAeme andl idtvstfy bsv Ick mmwhr

Distributed Systems, Distributed Data Bases, Data Base Management,
File Systems Architecture

20. ABSTRACTOM 0"nnua PevevS uSeV 4 neceuaWV WndV dn.V by Wlork fwMb.Y

La-J This report presents a conceptual model for distributed data sharing systems
based on the client-server concept. It shows how the model can be used to

LA-. design a layered set of protocols for such systems and gives an overview of the
functionality required.

Do1 JAN 73 U473 tiLOTION OF I NOV CS IS OBSOLE11

', UI;:1 Y CL.ASSIF ICATi1)'% F 1041S PA4.jor.F JXO,ro En"')c



.* * -* .• . . o b ,-

F.

An rchitectural eference Model

for

Distributed DBMS/File System Enviroments

Accession For

NTIS GRA&I
DTIC TAB

Unannounced E

Prepared by: Justification---

Peter S. Mager By
Distribution/

Robert P. Goldberg Availability Codes

Avail and/or
BGS Systems,Inc. Dist Special

470 Totten Pond Rd . -4i

Wa]tham,Mass.

85 03 24 046
TR-80-O10

Septembcr 1980

-------------------------------------------------- 
------_--_- ----- ----



________I ! j - ! I -'- L.- - . .. . - -. - -.. .- ....

SECURITY CLASSIFICATION OF THIS PAUL fWl,1 Oaa Ertawedi

READ INSTRUCTIOWSREPORT DOCUMENTATION PAGE BEFOE COMPLEING FORM
1. REPORT NUMER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

TR-80-010

4. TITLE Ian Subtitle) S. TYPE OF REPORT & PERIOD COVERED

An Architectural Reference Model for Distributed
DBMS/File System Environments

S. PERFORMING ORG. REPORT NUMBER

TR-80-010
7. AUTHORIsJ B. CONTRACT OR GRANT NUMBERIs)

Peter S. Mager
Robert P. Goldberg

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

BGS Systems, Inc.
Waltham, MA 02154

I. CONTROLLING OFFICE NAME AND ADDRESS 12 REPORT DATE

NUSC - New London Laboratory September, 1980
New London, CT 13. NUMBEI' OF PAGES

14. MONITORING AGENCY NAME & ADDRESS (if different from ConvrollIgJ Officj 15. SECURITY C'ASS. (of ths ro410

Unclassified
15. DECLASSIF ICA TION;DOWNURADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of ths Romp{,,t)

Unlimited

17. DISTRIBUTION STATEMENT (of the abstract ent red in Block 20. if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS lContinue on rev rse side if ne. fe ry end identify by hflnk nitnihprj

Distributed Systems, Distributed Data Bases, Data Base Management,
File Systems Architecture

20. ABSTRACT (Continue on reverS side if necessary and identify by block number)

This report presents a conceptual model for distributed data sharing systems
based on the client-server concept. It shows how the model can be used to
design a layered set of protocols for such systems and gives an overview of the
functionality required.

00 FOR 1473 EDITION OF 1 NOV C5 IS OBSOLETE

I JAN 73

SI.CURIIY CLASSIFICATIOJ OF THIS P.', E (,,ten OJIJ Entered



September 1980

Table of Contents

I Introduction 1

2 A Conceptual Model for Distributed Data Sharing 7

2. 1 Overview of Chapter 7
2.2 A Client-Server Model 9

2.3 A Clients-Servers-GDM Model 12
2.4 Summary 17

3 Decomposition of DBMS Functionality into Abstract Levels 19

3.1 Overview of Chapter 19
3.2 Proposed Layering for Database and File Management Systems 19
3.3 Application to Distributed Systems 24

3.4 Summary of Chapter 30

4 Distributed Data Sharing Functional Components 31

4.1 Data Accessing Functions 32

4.1.1 Front-end (Client) Functions 32

4.1.2 Back-end (Server) Functions 34
.1 .3 Migratory Flinctions 35

4.2 Global Data Manager 36
4.2.1 Intra-transaction Consistency Control (Coordination) 37

- 4.2.1.1 Access Planning 37

4.2.1.2 Run-time Coordination 38
4.2.1.3 Intra-transaction Reliability Mechanisms 38

4.2.2 Inter-transaction Consistency (Mediation) 39
4.2.2.1 Synchronization 40
4.2.2.2 Locking Mechanisms 41
4.2.2.3 Multiple Version Approaches 43
4.2.2.4 Deadlock Control 45

4.2.3 Fault Tolerance 46
4.3 Summary 46

g ' 5 Conclusion 49

6 References 51

,°.,.- - - - - - - ~ f i



%£.7

September 1980

List of Figures

N

Figure 2-1: The Client Server Model for Front-End Back-End 9
Interaction

Figure 2-2: A Client-Server-GDM Model for Distributed Data Sharing 9

Figure 2-3: Implications of Multiple Bck-Ends 15
Figure 2-4: Implications of Multiple Front-Ends 17

Figure 3-1: Hierarchical Decomposition of DBMS Functionality into 19

Abstract Levels
Figure 3-2: Xerox PARC Client-Server Interface 24

Figure 3-3: Data Interfaces in Tandem Systems 24

Figure 3-4: COMS Client-Server Interface 24

Figure 3-5: SDD-1, MUFFIN, DIRECT, and Distributed INGRES 24

Figure 4-1: Decomposition of Functionality in a Client/Server DBMS 32

Figure 4-2: The Subfunctions of the Global Data Manager 46

S

- ii -



List of Tables September 1980

List of Tables

Table 3-1: Logical Data Lkhits of Some Typical Systems 214



- :W*.7 -

Introduction September 1980

1 Introduction

-.

This report describes an architectural reference model that can be

used to decompose distributed data sharing systems into component parts.

The purpose is to formalize interfaces so as to facilitate the placement of

components on different nodes of a distributed system. It does this by

describing data access functionality in terms of two dimensions:

a data abstraction dimension that involves a step by step
1 transformation between the (physical) stored view of data and the

(end user) displayed logical view of data i,-J.

,._ a spatial dimension that involves the interaction between
,/ / transactions and between pieces of data on different nodes.

The data abstraction dimension is based on a hierarchical model that

describes the step by step transformation of data between linear bit

streams that are stored on auxilliary storage media and formatted displays

(records, reports, screens, etc.) that contain the view of the data

presented to end users. The intermediate levels in the transformation are

known as layers of data abstraction and represent the view of the data seen

by some intermediate component of the system. The portion of the system

that is concerned with these data transformations consists of components

that take data at one level of' abstraction as input and after performing

appropriate data selection, manipulation and combination output that data

at a different level of abstraction. Each level has its own conceptual

version of a data directory or dictionary that describes how to find data

objects at that level and may contain other information as well.

The spatial dimension provides a basis for partitioning the software

that controls shared access to data from concurrently executing programs,

terminals and job streams that may be running on different nodes of the

system. That software is responsible for ensuring consistency among copies

of data at different nodes (e.g. ensuring the consistency and integrity of

the database at any given level of abstraction). This spatial dimension

makes use of a network protocol layering to ship data between nodes. The



Introduction September 1980

data base control portion of this layering is the level primarily

responsible for the functions needed to ensure the integrity and

consistency of distributed data management functions and is thus the level

that is of primary concern in this report.

The interaction between these two layerings leads to a client-server

or client-global data manager-server model of distributed data sharing that

provides a framework ("formal reference model") for describing existing

systems, constructing new ones, and, in general, for discussing and

analyzing the functional issues and implementation tradeoffs common to such

isystems.
This type of model is useful for

, increasing the transportability of components between different
systems and subsystems

. the design of supersystems that connect DBMSs together and allow
them to share data and access each other's data

* facilitating interfacing between subsystems based on different
data models

* paving the way for the design of more reliable systems by
establishing a framework for efficiently supporting the redundant
storage of data within fault tolerant systems.

A model of this type may eventually be the basis for interface standards

that would significantly increase the transportability and reusability of

software in DOD environments.

Such concerns are particularly important for the Navy since its

software is characterized by

e long lead times for development

e high maintenance costs

9 unusually high costs for interfacing between different subsystems
and components.

These effects are magnified by the need for rapid deployment of new

technologies and in particular of those supporting the increased

-2-



Introduction September 1980

availability, reliability and responsiveness of computer systems.

This report presents some concepts that seem to have potential for

improving the design, maintenance and general understanding of distributed

data sharing systems. These include:

* the use of a hierarchical layering of data abstraction to
characterize approaches to data sharing in a data model
independent way. This makes it possible to isolate
considerations of data modeling from issues related to data
sharing and discuss coordination mechanisms independently of the
level of abstraction and granularity of the data objects being
shared.

e the use of logical data units (LDUs) to define the interface
between modules at different nodes. These LDUs are the basis for
standardizing interfaces between database modules in different
computers. By parameterizing the choice of LDU we make most
(possibly all) of the issues related to sharing of data
independent of the format and meaning of the data being shared.
Filling in the choice of LDU allows our model to be applied to
different systems.

* the development of a client server model for division of
functionality between front-end and back-end parts of a
distributed data sharing system. This type of model is useful
for very simple systems and may be most applicable to a local
area network environment that ties together small computers each
of which has very limited resources or to a two computer system
where functionality is divided between the two computers in a
cleanly interfaced way.

* the development of a client-global data manager-server model to
describe networks allowing coordination between heterogeneous
data base management systems at different nodes. This is a more
general model that subsumes the client - server (front-end /
back-end) model and provides additional functionality to support
redundant copies of data and other features that characterize
true distributed data sharing. These are probably needed to
provide the fault tolerance and high availability that seem
desirable for future Navy real time systems.

The formal reference model presented here divides global data

management into three functional areas:

* those that support intra-transaction consistency, e.g. the
reliable execution of a single transaction

e those that support inter-transaction consistency, e.g. the

-3 -



Introduction September 1980

reliability of the database in the presence of concurrent
transactions that could potentially interfere with each other

e various supportive features that could be interpreted as data
sharing oriented enhancements to the network environment. These
might include a global directory system, various primitives to
support resynchronization, and facilities to detect and recover
from network problems such as the failure of an individual host.

I
In the course of describing the model, several inter-transaction

consistency control techniques that may be particularly relevant to Navy

real time systems are presented. These include:

p generalized time stamps that can be used to explicitly integrate
priority considerations into the synchronization scheme

* multiple version approaches (based on time stamp ordering) that
may allow faster responses to transactions under some
circumstances.

Similar ideas have been used successfully in other data base related

contexts, but their use together in a formal reference model is new to this

report. In particular, the data abstraction and spatial layerings presented

here may form the basis for construction of new types of systems that allow

distributed data sharing even in contexts where several different data

models are used. It r]ay also help facilitate the design of modular

software with increased portability of components between different

subsystems.

Chapter 2 presents a client/server approach to dividing data access

functionality into front-end and back-end parts. In this framework the

client machine or front-end performs application dependent functions

including handling the interface(s) to users. °1he server machine acts as a

back-end data manager and interfaces to/controls disk storage and other

mass storage devices. The chapter then goes on to describe a more general

model that divides system functionality into client, server, and global

data manager parts. This has the advantage of separating those parts of a

system that regulate the interaction between processes at different nodes

\a function that involves complex design tradeoffs) from those involving

only actions associated with a single node. The latter can generally be

handled in a much more straightforward manner. The rationale for a global

-- 4 -



Introduction September 1980

data manager is then explained by starting with a simple front-end/back-end

system involving two nodes and introducing first multiple back-ends

(servers) and then multiple front-ends (clients) to show where the need for

coordination functionality comes from.

Chapter 3 introduces a data base architecture that divides

database/file system functionality into eight hierarchical levels of data

abstraction, each of which provides a consistent view of the data stored

and used within the network environment. This layering is valid for both

single node (standard centralized) and distributed DBMSs, but the layers

are chosen so as to be particularly suitable for distributed systems. The

chapter then goes on to explain how the architecture can be broken into

client (front-end) and server (back-end) parts by choosing an appropriate

layer at which to divide the functionality of the system. Lower levels of

abstraction (those closer to the physical storage format) are handled by a

back-end server data handler that can be anything from a disk or memory

controller to a data base machine or mainframe computer. Higher levels of

abstraction (those closer to the end user view of data and maintaining more

interpretive information) are handled by a front-end user oriented client

machine that runs application programs and some higher level

transformation, manipulation and control functions related to data

management. The choice of level of abstraction for the division between

client and server machines is an important design parameter that greatly

affects the appearance and performance of the resulting system. Several of

the architectures described in (Mager 80] are then characterized in terms

of' this model by way of example of how it can be applied to real systems.

Chapter 4 presents a decomposition of distributed data sharing

architecture into functional components. This decomposition describes a

prototypical data sharing system in terms of functional modules.

These modules are divided into categories encompassing

* client (user-interface) functions

* server(data handler) function

* migratory functions that can be in either the client or server

* global data manager functions needed for coordination between

-5-



Introduction September 1980

modules on different machines.

daaSome alternative strategies for distribution and control of global

data manager functions are then described.

Chapter 5 summarizes our results, reviews the applicability of these

results to Navy real time systems and suggests some areas for further

research.

This report assumes familiarity with basic database concepts. A

reader not familiar with these might find it useful to consult an

elementary text book on database management such as [Date 75) or [Martin

77]. Chapter 2 is probably the easiest to read and should be

comprehensible to an educated reader who has a moderate familiarity with

basic computer concepts. Chapter 3 is more specialized and is probably

most meaningful to readers familiar with at least one database management

system or at least with general database management concepts. Chapter 4 is

mainly of interest to designers, implementers, and planners of distributed

database and file systems.

-6-



A Conceptual Model for Distributed Data Sharing September 1980

2 A Conceptual Model for Distributed Data Sharing

2.1 Overview of Chapter

One of the main goals of this report is to show how a formal reference

model for distributed data sharing can be derived from a hierarchical

abstract layered model for a single node system by choosing an appropriate

abstract level and using that as an interface between front-end (client)

and back-end (server) parts of the system. This chapter introduces the

division between client and server parts and gives some examples of how a

model based on this division can be applied to existing systems. It is

hoped that after seeing the formal reference model represented in these

simple terms, the reader will be prepared for the greater complexity that

will be introduced in succeeding chapters.

This chapter describes distributed data sharing in terms of a

client-server model. It then extends the model by adding a Global Data

*Manager (GDM) to handle potential conflicts that may arise if multiple

clients and multiple servers are allowed in the system.

Each front-end or client part contains those services associated with

higher levels of data abstraction - in particular those services associated

. with application (client or customer) functions. The back-end or server

part contains those services associated with lower levels of data

abstraction - in particular those functions concerned with management of

data stored on permanent, usually bulk store, mass memory devices, in a

-- sense, the server parts of the system can be thought of as being secondary

service processors (servers) for the applications (clients) running on the

front-end (client) parts of the system.

This chapter will give an overview of two ways of looking at this

division of functionality. It will do this first in the context of a

client accessing a single back-end server at a time with no interactions

S with other clients. It will then generalize this by allowing arbitrary

interactions tetween clients and servers. The last part of the chapter

discusses the additional functional features needed to support this and in

.0-



Overview of Chapter September 1980

a sense gives a derivation of what a global data manager that handles this

interaction should consist of.

The terminology used in this chapter and throughout the report has a

sound historical basis. he use of the term back-end is derived from the
concept of back-end data managers (and data base machines) that was

originally introduced by the XDMS project at Bell Labs in the early 1970s

[Canaday 74). Originally back-end data managers were conceived of as a

way of offloading work from a large host analogously to the way front-end

communication processors had previously offloaded some of the work of

interfacing to terminals from those hosts.

Our use of the term front-end is more general than current usage in

that we use it to refer to all client (application and high level)

functions not just to the communication interfacing functions handled by

conventional physical communication front-ends such as IBM 3705s or COMTEN

processors.

The idea of client and server machines was introduced at Xerox PARC in

the mid-1970s as a way of describing the interaction between ALTO personal

computers (clients) and various resource managers (servers) that interact

with each other in the PARC Ethernet. Our use of these terms is more

general in that we use them to describe logical functions rather than

physical machines. These logical functions can be on the same or different

physical machines. This separation of logical concepts from physical

entities is important because it allows the reference model we are

developing to be more easily generalizable to a many-client - many server

environment. It also makes the choice of physical location of the server

transparent to the client (and vice versa). This allows access to server

functions on the same node as the client and to server functions on a

different node to be handled in a uniform manner.

I

-- 8 -



A Client-Server Model September 1980

2.2 A Client-Server Model

Figure 2-1 shows a model of a data sharing network based on a simple

client (application) - server (data handler) model. Application programs

and tee high level part of the data sharing system run in client machines.

These transforM user requests (transactions) into network messages to data

handler or server machines. Each server is responsible for controlling

accesses to and maintaining the integrity of its portion of the database.

The unit of data transfer between client and server machines can be high

level data base records, storage oriented file records, pages in a linear

address space, or similar units. The choice depends on how the

functionality of the system is divided between client and server.

The Xerox PARC file server systems [Swinehart 79) [Israel 78]

[Paxton 79] are based on this type of approach. In their case single-user

client computers (Altos) are connected to server data handlers using a high

bandwidth contention-based bus (the Ethernet). The unit of data transfer

" * is a page or block of a linear address space.

An analogous interface based on a very different hardware

configuration is used by the bibliographic search system at OCLC in Ohio

[Blake 791. In their case the data handler server is a multiple (10)

processor Tandem system which is internally tied together by a high speed

bus. Four SIGMA IX computer systems currently act as client machines

processing the application parts of user transactions. The client and

server parts of the system are joined by communication links. In this case

the unit of data transfer is the database records maintained by Tandem's

data handler (ENSCRIBE).

A similar interface could be used to allow access from ordinary host

client machines to back-end data manager servers such as the database

4 machines being developed by the University of Ohio and Univac [Banerjee

78] (Hsiao 79] [Banerjee 79] or the multi-level data hierarchies proposed

by Lam and Madnick [Lam 78] (Madnick 75) (Madnick 79] and Berra [Berra

79]. The data interface could be "database calls" (DL/1 calls in IBM's IMS

4system) and retrieved records, logical fragments consisting of contiguously

stored parts of rows of relations, arbitrary sized blocks or pages from

linear memory or other convenient data units.

S-9-



A Clients-Servers-GDM Model September 1980

DAT*,IBAS4*-

Figure 2-1: The Client Server Model for Front-End back-End Interaction

- 10 -



-~ 7,. s*- I Z-~

A Client3-Server-GDM Model September 1980

S S

GDX4 (DM

C C

C;) a Cl hi1nt odulni~

Figure 2-2: A Client-Server-GDM Model for Distributed Data Sharing



__1:_;7 .; - 777 7 - ~ .. - --

A Clients-Servers-GDM Model September 1980

2.3 A Clients-Servers-GDM Model

A more general view of distributed data sharing is shown in Figure

2-2. In that figure both the application client (C) and data handler

server (S) parts of the data sharing system can reside in the same or

different nodes. All interfaces between them are controlled by a Global

Data Manager(GDM) which routes data requests to the appropriate server. In

this way data accesses are made independent of the server module that

controls the data. The GDM is responsible for whatever consistency control

and fault tolerance support are needed to make the system function

reliably. This model is more general than that shown in Figure 2-1 in that

some nodes may contain only client modules and a GDM interface, some may

contain only a server module and the corresponding piece of the GDM, and

others may contain all three types of modules. It appears that this model

is more appropriate for large processors and correspondingly more complex

data sharing systems since the need to have both client and server modules

in the same node is more important in large multi-programming systems than

in small single-user systems. A further generalization of the model shown

in Figure 2-2 would allow multiple client modules (perhaps one per

application program) and multiple servers at a single node. This may be

useful in certain environments.

The distributed version of Cullinane's CDMS system [Cullinane 79] is

based oh this second type of approach. In that system IDMS corresponds to

the server data manager, an application program with a small database

interface corresponds to the client module, and an intermediate facility

called Multiple Computer Support that runs in the same machine as client

modules functions as the global data manager. Several client modules may

run on the same node and interface to the servers through the same multiple

computer support facility. The unit of data transfer is a data packet that

includes information from both the DML (Data Manipulation Language) call

and the subschema.

A similar modular division is used by CCA's SDD-1 [Rothnie 79). In

this case, the server modules are Datacomputers, the client modules are

transaction managers associated with users or application programs and the

Global Data Manager is an extended facility that includes reliability

-12-



A Clients-Servers-GDM Model September 1980

enhancements to the underlying network environment. The unit of data

transfer is a logical data fragment that corresponds to the part of the row

of a relation that is stored contiguously.

• " The University of California at Berkeley's Distributed INGRES and its

associated local area network variant MUFFIN [Stonebraker 79] uses a

modular breakdown similar to C1D4S and SDD-1. One or more master INGRESes

per system contain the client-module/user- interface functionality as well

as most of the functionality of a Global Data Manager. Slave INGRESes on

the same or other machines function as back-end data handlers or servers.

Like SDD-1, Distributed INGRES uses logical data fragments as its

client-server data interface.

The generalization from a client server system, in which a server is

(at least temporarily) dedicated to a single client, to a

clients-servers-GDM system, in which clients request that actions be

performed by a service facility consisting of multiple servers, introduces

a set of requirements that form the crux of distributed data sharing

functionality. It is this ability to treat a group of back-end servers as

a single service facility that distinguishes distributed data sharing

systems from back-end storage networks such as XDMS [Canaday 74] or the

Octopus network [Watson 80] at Lawrence Livermore Labs. The functionality

to support this integration of clients and servers into a closely

interacting group of processes is embedded in the global data manager

(GilM). To illustrate this better, it is convenient to subdivide the

functional requirements for global data management in distributed systems

into three main parts:

* those that allow a client machine to treat a group of back-end

servers as a single service facility,

e those that allow a group of back-end servers to handle
potentially conflicting requests from multiple clients, and

* those that provide enhancements to the reliability of the
underlying communication network.

In our model the first type of function will be grouped together as

intra-transaction consistency control functions, the second as

inter-transction consistency control functions, and the third as network

-13-



4 A Clients-Servers-GDM Model September 1980

enhancements.

a The first group of functions, those that support the integration of

back-end servers into a single service facility, requires the GDM to

support the following functions:

1. locating on which back-end server a given piece of data (data
fragment) is stored,

2. choosing the "nearest" or "most easily accessible" copy of the
data fragment if it is stored redundantly on multiple machines,

3. planning in which order (and with what amount of parallelism) toN access data and how to combine data from different machines,

4. handling any format conversions or data translation needed for
compatibility among data items stored on different machines
(Translation may be required for data codes, formats and/or
structural information.),

5. providing a backout mechanism to restore the data base to a
consistent state if the client front-end or network crashes after
performing updates on some but not all of the back-end server
machines,

6. providing a mechanism to queue updates to servers that are
temporarily unavailable (either because the server is down or
because it is separated from the client due to network failure).

These requirements are illustrated in Figure 2-3. In the figure a

single user attached to a client machine performs an update or query that

accesses data stored on various machines distributed around a network. The

global data manager component on this user's local machine intercepts his

request and translates it into a set of messages to the back-end data

managers (servers) on the nodes where the data to be retrieved or updated

is stored. To do this the global data manager makes use of three principal

subcomponents:

e a directory subsystem which helps locate where copies of data to
be accessed are located,

e an access strategy planner which determines which copy of data to
access,

9 an intra-transaction consistency control function which provides
reliability support and in particular ensures that redundant

a- -



' A Clients-Servers-GDM Model September 1980

copies of a data item are kept consistent.

In addition, a data format translator may be provided to perform any data

conversions that are required. However, we shall see in Chapter 4 that

this is more conveniently interpreted as part of the data access function

rather than as a GDM activity.

Requirements (1) and (2) from our list are usually handled by the

directory system, requirement (3) by the access planning function, (4) by

the data translation function, and (5) and (6) by the intratransaction

consistency control function and extensions to the network services. This

will be discussed in more detail in chapter 4.

Allowing multiple client machines to access the server machines

concurrently creates a need for a mechanism to maintain consistency among

requests (especially updates) coming from different machines. The usual

requirement is that a collection of transactions be executed in such a way

that the concurrent execution of the group of transactions is equivalent to

executing the same group of transactions serially (one at a time in a

noninterleaved way) in some order [Rothnie 77] [Bernstein 79]. This

requirement is relatively easy to satisfy if there is only one server

machine. All that is required is a global data manager or mediator that

single threads the transactions similarly to how a centralized DBMS handles

transactions from terminals. (The problem becomes more complex if

multi-threading of transactions involving multiple operations is allowed.)

Satisfying the serializability requirement in a distributed network with

multiple servers in an efficient manner is one of the more difficult tasks
0 of distributed data base management. In addition to determining potential

overlaps among data items that are accessed or manipulated by different

transactions, there are problems of synchronizing operations in different

machines. Both types of problems introduce functional requirements that

require support facilities to be added to a standard network architecture.

The most important of these facilities that seem necessary for network

synchronization are

e a time stamp mechanism or some other means to indicate the start
time of transactions on a network wide basis (transaction

-15-



A Clienta-Servers-DM Model September 1980

CUM0

User Oriented
Front-end

Datratran.acData

?'7araqeDat anaerMage

Fiur 23:Dire~ctoy oat Forma~ tak-nd

- 16 -



A Clients-Servers-GDM Model September 1980

clocking),

" a network virtual clock or a method to synchronize the clocks on
the individual machines (processor clocking),

- a global scheduler or means of deciding in what (possibly
interleaved) order the operations of the different transactions
are to be performed,

* an intertransaction consistency analyzer, and

e reliability enhancements and backup mechanisms built into the
communications medium.

These requirements are illustrated in Figure 2-4. In the figure several

users attached to transaction processors that may be located on one or more

nodes of a network access an integrated back-end storage facility which may

be distributed across several other nodes. In order to support such access

the global data manager illustrated in Figure 2-3 must be enhanced with new

functionality to handle potential conflicts among transactions. This

functionality is grouped into two main subcomponents: inter-transaction

consistency control mechanisms and reliability enhancements - backup

mechanisms. Consistency control mechanisms that may be provided include

transaction clocking (timestamps), processor clocking (a network virtual

clock), a scheduler, and an inter-transaction consistency analyzer.

Chapter 4 discusses how these components fit together and gives further

details on the rationale for and design tradeoffs among different

approaches to implementing them.

2.4 Summary

In this chapter we showed how a simple client-server division of

functionality can be used as the architectural basis for some simple

systems. We then extended the client-server division of functionality into

a more general clients-servers-gdm model for distributed data sharing. In

this context we explained why the global data manager (gdm) functional

components were needed to support first multiple servers and then multiple

clients in a multi-server environment. The next chapter will expand on

this by showing how the choice of point of division between client and

server can be made based on a hierarchical layering of data abstraction.

-17-



.- - - *

Decompo3ition of DBMS Functionality into Abtract Levels September 1980

User Oriented' User Oriented User Oriented
FronL-end * * Front-end * Front-end

(Transaction (Transaction (Transaction
Processor Processor Processor 00

GlblTransaction Clocking (Timsams

[Rieliability EnhancementsSceur

back-end Storage Facility

Figure 2-4: Implications of' Multiple Front-Ends

-18



Decomposition of DBMS Functionality into Abstract Levels September 1980

" ' 3 Decomposition of DBMS Functionality into Abstract Levels

3. 1 Overview of Chapter

This chapter gives a paradigm of how a data base management system

(DBMS) can be decomposed hierarchicallly. In this decomposition each layer

of the DBMS deals with data at a specific level of abstraction. One such

choice of levels of abstraction is described in this chapter.

The usefulness of this decomposition from the viewpoint of our formal

reference model is that high levels of abstraction can be implemented in a

client (abstract) machine, low levels of abstraction in a server (abstract)

W4 machine, and a particular level of abstraction chosen as the interface

between the two machines. Thus, even though the layering was originally

developed for centralized DBMSs (residing in only a single node), its main

use in our model of a distributed data sharing system is to provide a

mechanism to divide DBMS functionality into front-end (client) and back-end

(server) parts. It turns out, as we shall see from the examples presented

later in this chapter, that the use of this type of layering is a very

general way of modeling the division between client and server machines.

3.2 Proposed Layering for Database and File Management Systems

Conventional data base management systems (on a single computer) can

be decomposed using 8 hierarchical levels of abstraction. One such

decomposition is shown in Figure 3-1. In this model two levels are devoted

to the physical I/O and file system, three to internal DBMS access

functions, and three to end user views of the data base contents. Each

level uses the primitives of the level below it to implement a semantically

richer view of the data, i.e. one that is closer to the end-user view.

Hardware or software handles the interface between levels and does any

translation or provision of additional functionality that is required.

This model is a variation on the data access portion of DIAM II (the

Data Independent Accessing Model version 2). The DIAM model was originally

-19-



7|*Proposed Layering for Database and File Management Systems September 1980

CORRESPONDING
CONSTRUCTS AND MAPPINGS DICTIONARY/DIRECTORLEE NO EELNM

* LEVEL NO. LEVEL NAME VISIBLE IN TYPICAL DATA MODELS VIEW

END USER
ENDUSE QUERY COMPOSITE

M 
COMPOSITE

Level 7 INFORMATION RELATIONS OR GLOBAL
LEVEL OPERATIONSLEE 

EXT ERNAL
SCHEMAS

_(SUBSCHEMAS)

QUERY
END USER INTERNAL PROGRAMMER

Level 6 LOGICAL INTERFACE DML
LEVEL (ROWS OF INTERFACES

RELATIONS)

DBMS FULL SCHEMA
Level 5 INFO-LOGICAL CANONICAL FORMS (CONCEPTUAL

LEVEL OF DATA SCHEMA)

DBMS
NAVIGATIONAL

Level 4 LEVEL (STORED LOGICAL POINTERS
LOGICAL RECORD) BETWEEN RECORDS INTERNAL
(DIAM STRING SCHEMA
LEVEL (PtlYS ICAL

FIELD SCtlEMA)
REPRESENTATION BIT REPRESENTATION

ILevel 3 LEVEL (DIAM OF DATA
ENCODING LEVEL)

FILE SYSTEM
LEVEL (DIAM DIAM FRAMES

* Level 2 PHYSICAL ACCESS METHODS
ACCESS LEVEL) HASH CODING, INDICES

DIRECTORY
SYSTEM

LOGICAL PHYSICAL BLOCK OR PAGE
Level 1 I/O LEVEL IN A LINEAR ADDRESS SPACE

PHY SICAL VOLUME TABLE
Level 0 1/0 LEVEL TRACK, SECTOR OF CONTENTS

(VTOC)

Figure 3-1: Hierarchical Decomposition of DBMS Functionality into
Abstract Levelf7

-20-



* Proposed Layering for Database and File Management Systems September 1980

proposed by Michael Senko and his colleagues at IBM [Senko 75] and

partially implemented as part of a data base simulator by Martin Marietta
Iw (Schneider 75). A good description of the relevant parts of the DIAM II

model is contained in [Sockut 77].

In order to be applicable to as many data base systems as possible the

model includes 8 levels corresponding to the hierarchical levels of

abstraction in a hypothetical data base management system. This may be a

superset of the levels of abstraction provided in any given system in the

sense that not all levels need be provided in all systems. For example,

the infological level (to be described below) is rarely implemented, but is

considered very useful as an aid to conceptual design. In addition, many

systems do not provide the end user facilities that correspond to the

higher levels of data abstraction. Similarly, lower levels might not be

included if an implementation contains some direct execution facility such

as associative memory.

In Figure 3-1 each level of data abstraction is divided into three

sections that describe:

e the general level descriptor,

o the data objects this would correspond to in some typical data
models, and

o-the corresponding data dictionary or directory facility.

The end user composite information level (level 7 of the model)

contains primitives for processing sets of records grouped together into

units such as relations, reports, screens, Codasyl sets, etc. It provides

global and macro operations and operations on sets of data objects. It may

also support composite objects such as means, sums, standard deviations,

and derived objects that are expressable as functions of objects actually

stored in the database. The objects can be described in a data dictionary

facility, a macro description facility, or in separate screen formatting or

report writing utilities.

Level 6, the end user logical data level contains such data objects as

the rows of a relation and single logical records. These logical records

-21-



.• . . ° • • " " ° . °•- .• ° • " . = °." _"

Proposed Layering for Database and File Management Systems September 1980

may contain "derived data items" that are computed automatically and/or

"virtual data items" that are pointed at from within one physical record,

but really stored in other physical records. The end user may view a

subset of the data base's attributes and relationships and the subset may

be viewed as having a certain structure (e.g. a hierarchy, a table or

relation, or a directed graph). This end user view may be different from

any stored view represented at the navigational level (level 4).

Formatting information, logical relationships between data items and

records, and access rights are described in the corresponding user

subschema. Both level 6 and level 7 contain representations of data (both

formats of and linkages between data items) that are visible to end users

and application programs. They are for most purposes independent of how

data is actually stored in the database.

Level 5, the infological or canonical format level is an intermediate

conceptual level that corresponds roughly to the Infological Level in DIAM

II (Senko 753. It provides a global logical view that allows data to be

represented in identifier - attribute - value terms that are independent of

both the external user (formatted) representation used by application

programs and end user facilities and the internal formats and structures

used for storing and accessing data on physical media. Data objects are

represented in their normal or most general form. The entity-relationship

model (Chen 763 and the ANSI SPARC entity attribute model [ANSI/X3/Sparc

75] can-be used to represent data at this level. The associated data

descriptor is the full schema (or conceptual schema). This level is often

implicit rather than explicit in actual implementations.

Level 4, the DBMS navigational level is essentially the same as the

DIAM string level. Data objects (records) at this level are accessed in

terms of the units they are stored in and the logical relationships between

these units. Objects at this level include relations in a relational data

base, records and sets in a Codasyl data base, and logical segments and

hierarchies in a hierarchical data base. The logical pointers between

records are visible at this level allowing a user to "navigate" through the

data base by following pointers between records. "Get next record within

set", "get logical child", and "find logical parent" are examples of

primitives that can be used at this level. The data objects at this level

- 22 -



Proposed Layering for Database and File Management Systems September 1980

and the relationships (pointers) between them are described in the physical

schema.

Level 3, The field representation level (DIAM Encoding level.) defines

how data objects (DIAM strings) are represented (encoded) in physical

storage. Records and fields are represented at this level as one

dimensional bit streams in a linear address space. Character encoding

(e.g. ASCII vs. EBCDIC vs. UNIVAC fieldata), integer encoding (e.g. binary

vs. BCD vs. packed decimal), field sizes (e.g. 8 vs. 16 vs. 32 bit

integers), record sizes (e.g. 6 fields of 4 characters each), and basic

storage representation (e.g. "April" vs. "24") are specified at this level.

Data encryptation and/or compression and relationship encodings (such as

embedded vs. array vs. bit map pointers) are also specified here. Examples

of objects at this level are a row of a relation, an IMS logical segment,

and a Codasyl record. A record can be a single element of contiguous

storage or several such elements chained together via a physical pointer.

Examples of the latter would be a linked list and a variable length record

extending to an overflow area. Objects at this level are described in the

physical schema.

Level 2, the file system or access method level accesses physical

segments (records) within a file. Logical fragments, i.e. the parts of a

logical record that are stored contiguously, and the access paths to get to

them are the basic constructs at this level. Data objects at this level

are treated as a contiguous block of n bits, n bytes or n words. Access

methods that can be provided include multi-key and regular ISAM, hash

coding techniques, b-trees, direct and sequential access, etc. File and

record access is supported by a directory system. Access paths may also be

described in the physical schema.

Level 1, the virtual address space level, treats secondary storage as

a large virtual address space analogous to main memory. This linear

address space may be divided into physical pages or blocks and managed with

the help of a file management system. The associated directory system

keeps track of space allocation, garbage collection, and access rights at

the file level. File systems such as Infoplex [Lam 78] and WFS [Swinehart

79] make use of this level. Some operating systems such as IBM's CMS

[VM/370 77) and Data General's AOS [AOS 77) use this as an internal

- 23 -



° Proposed Layering for Database and File Management Systems September 1980

interface to the part of their file system that handles disk space

allocation and maintenance.

Level 0, the physical I/O level is the lowest level we mention here

and is device dependent. Disk accesses are to track and sector numbers.

The associated directory structure is the VTOC (volume table of contents).

IO 3.3 Application to Distributed Systems

In the client / server model described in Chapter 2 one of the levels

of Figure 3-1 is chosen as an interface between the client (front-end) and

server (back-end) machines. All functionality (levels of abstraction)

above this interface is implemented on the client machine (front-end), all

functionality below the interface is implemented on the server (back-end).

We call the unit of information transfer at the interface a logical

.- data unit or LDU. The LDU for a given network denotes a canonical form

that is the data interface between different machines. Examples of LDUs

for some typical systems are listed in Table 3-1. The variation in

abstract level of the LDU seems to be an appropriate way to control the

relative amounts of functionality to be put in the client (front-end) and

server (back-end) parts. Treating the placement of the interface as a

parameter in this way makes it easier to see functional similarities

. between different types of data sharing systems and exposes the underlying

commonality of functional requirements in distributed data sharing systems.

*' It may also potentially allow portability of global data manager software

between systems that are very different from the point of view of their

data model.

Figure 3-2, Figure 3-3, Figure 3-4, and Figure 3-5 show where the

* - systems described in [Mager 80] fit into this model. Xerox and Tandem put

the interface at a relatively low level so that their implementations look

like distributed file systems (with the possibility of data base

functionality being added in the client machine front-end) . Cullinane puts

the main part of its data base management system in the back-end server

4 with facilities in the client front-end for remote data base access at the

DML user subschema level. INGRES and SDD-1 use an intermediate approach

*.that puts most of the data management functionality in the back-end server.

-24-



Application to Distributed Systems September 1980

I

-.

LOGICAL DATA UNITSYSTEM
(LDU)

XEROX WFS PHYSICAL PAGES

TANDEM PHYSICAL RECORDS

SDD-1, INGRES LOCICAL FRAGMENTS

DATA BASE RECORDS
CULLINANE

DATA BASE COMPOSITES

.

Table 3-1: Logical Data Units of" Some Typical Systems

- 25 -



Applicationl to Distributed Systems September 1980

LEVEL %). LEVEL NAMEVSBLI YPCLDTAMDL

Level 7

IaWol ()

Level I

1,t ~ ~ . .... .. if ~ *..................................
.. ..... .... ....... I ..... ... ... .... .....~

.. . . . . ... .. .... ... .. .. . ....

2 ..... L .. ......
~~~~~~. . .....;l ....( ..... O NO C N rE T

:::143C

Figure..... ..-2:. Xeo PARC... .....~ev~ rO -r

.. .26. ...



Application to Distributed Systems September 1980

CORRESPONDING
CONSMU'ICI A ND MAPP INGS ~ I)[ Di I ONAI{Y/I)IRECTORY

LEVEL. NO. L EVEL NAME D I (lATA MODELLS VI1W

........................................ ...... ..........
.~ ~ ~ ~ ~ ~ ~~. ....... .....~ .. . .. .*. .*

. ...... ......

...... ...... ......... ..... . . . . . . .

Le~vel1 7 ~ N U 1 I3):.......... ...

I~~.... .. .......~$N lN~A

...... ........................................... ........

S ~ 3 ~ N~1 Al ~ ............................................

.......... .........

.. . . . .. .. .

P...... 
. .~l V...M ......I~ ~ ~ ~ ~ ~ ~ ~ ~~~. ......~i ~i. .I~AI l&IIO CNEI

___________________~~... 
.............__ _ __ __ __ _ __ (T C

Figure ~ ~ ~ ~ .3...3:.. 
.~aItra~ n adr ytm

.. 
27 

.........



Application to Distributed Systems September 1980

CORRESPONDIN[G
CONSItIci s AND MAPIINCS II NR/ HClCRLEVEL NO. L IEVEL NAME vLi~It I UJIAI II iL

. ... . . . . . ::x...............

. ... .. . .

.............

... .... . . .. .... (~O A.. ..... ~*..:Level7
.. .. ... .

________X __ _______S__ ___________ 6.it~~I

X0

. . . . . .. . . . .

LELO (CIR FC InteRFfCcS

RELATIONS)

DBMS CNNCLFRSFULL SCHEMA
Level 5 INFO-LOGICAL CAOICATAR (CONCEPTUAL

LEVEL O DAASCHEMA)

DBMS
NAVIGATIONAL

Levl 4LEVEL (STORED LOGICAL POINTERS
Lvl4LOGICAL RECORD) BETWEEN RECORDS INTERNAL

(DIAM STRING SCHEMA
LEVEL __________________ (PHYSICAL

FIELD SCHEMA)
REPRESENTATION BIT REPRESENTATION

Level 3 LEVEL (DIAM OF DATA
ENCODING LEVEL)

Q FILE SYSTEM
LEVEL (DIAM DIAM FRAMES

Level 2 PHYSICAL ACCESS METHOD)S
ACCESS LEVEL) hIASII CODING, INDICES

DIRECTORY
SYSTIEM

IA)(;11,OC [CAL I'HiYSICAL BLOCK OR PAGE
LeveI I1/0 LEVEL. IN A LINEAR ADI)[?ESS SPACE

PIIYS [CAL VOLUME TABLE
Level1 0 1/0 LEVEL TRACK, SECTOR OF CONTENTS

____ ___ ___ ___ __ ___ ___ ___ ___ ___ ___ ___ ___(VTOC)

Figure 3-24: CD4IS Client-Server Interface

-28-



Application to Distributed Systems Spebr18

0)RHESIPOND)ING

LEE O. LVL AECN iRII A - ND MAPI S 1) [(ITI tiN ARY /D) I R1 (I (RY
LEV~. NO I Eil NMI:VISIBLE IN LI)T UAJ, IlAb\ MO) IV 11-3

........ ........................ ..........

g~3) l1...........

Level 7 ... .....1W ~ 41K~ OA

.......... UI 14i
____ ____ ___ ___ ............. t ~ i A S

........ ....... ....
.. ...... ....

.. .. .......
............

...................................

. ................... ...............................
Lt~v.....4............

I~tV LI ...........

.. .....
AC(:I~~~~~~~~~s... .........I(OlI t;* NII:IsIrt rj

0 ~ ~ ~~~~.... ....._____ _______________

'IIY....... .... iI~ K ! IW

1'IY I( I .. UM .....I~~~~~tV~~~~~~.. .. ....~~vi I~\:K* I~ 1 ;~ E
_________________________ _____________________________________..............(V. (:

-W

Figur 3-.: SD.... MUFN DI.T a .itiu~dIG

....- 29-....



* Application to Distributed Systems September 1980

However, functionality is provided in the client front-end to translate

user requests into a program consisting of accesses to logical fragments.

fl (A logical fragment is the part of a row of a relation that is stored in a

physically contiguous location.) This translation is necessary since a

single user request can access fragments that are stored on different

machines.

3.4 Summary of Chapter

This chapter introduced a new way to decompose access to data in a

hierarchical fashion. The approach is based on a hierarchical layering

called the Data Independent Accessing Method (DIAM) originally proposed by

Michael Senko in the late 1960s and expanded over the next ten years as

part of the DIAM II project at IBM. This report uses an extended and

modified variation on the DIAM II layering. The modifications were chosen

so as to facilitate the application of the model to distributed systems and

to make it applicable to distributed file systems as well as to distributed

database management. Some examples were given of how typical distributed

database and file systems can be described in terms of the model.

6

4

4

' -30-



Distributed Data Sharing Functional Components September 1980

4 Distributed Data Sharing Functional Components

U

The previous chapter described a formal reference model for

distributed data sharing in terms of hierarchical levels of abstraction.

This chapter describes such a model in terms of the functional components

needed to implement a distributed data sharing system. There are two main

categories of such functions:

e data accessing functions and

* global data management functions.

The data accessing functions provide traditional data base management

services similar to those in centralized systems. The basis for their

extension to distributed systems was laid out in the previous chapter in

terms of a hierarchical layering and its division into client and server

parts.

The global data management functions provide control mechanisms that

ensure the integrity of data that is distributed across multiple nodes.

Much of the functionality is special to distributed data sharing systems,

though there are many parallels and elements of commonality with other

distributed resource sharing systems such as distributed operating systems.

This decomposition of data sharing functionality is illustrated in

*O  Figure 4-1. In the figure data access functions are divided into the two

main categories of chapter 2: client (front-end) functions and server

(back-end) functions. Certain functions that don't fit uniquely into

either client or server are termed migratory functions and can be

* .implemented in either the client or server part of the system.

Global data manager functions are also divided into three

subcategories:

e Intra-transaction consistency control functions that ensure that
each transaction leaves the database in a consistent state
(provided the database was in a consistent state when the

- 31 -



• ~~..... -..- ,.... . . ..... ...- '... ... -.- -, .--.. . - .. _..-,. ... . .. ..

Distributed Data Sharing Functional Components September 1980

transaction started),

* inter-transaction consistency control functions that arbitrate
and schedule conflicting resource requests from different
transactions, and

" reliability enhancements to the network environment that support
the continued performance of the data sharing system even in the
presence of failures of individual components.

The global data manager serves to coordinate the interaction between

* clients and servers and ideally makes the fact that the clients and servers
I are on different machines and, indeed, may be distributed across multiple

machines transparent to the data accessing software.

4.1 Data Accessing Functions

The three categories of data accessing functions:

* front-end client functions

e back-end server functions

* migratory functions that can be in either the front-end, the
back-end or partially implemented in both

will be described in this section.

4.1.1 Front-end (Client) Functions

The front-end client or application module is generally responsible

for

* compiling user requests into a canonical form understandable tothe servers

e transforming operations on user visible data items into
operations on logical data units

e providing formatting and display functions and other aids to
usability.

-32



Front-end (Client) Functions September 1980

FUCIN FU33-ON



Front-end (Client) Functions September 1980

This entails scanning, parsing and doing some semantic interpretation

of user commands, interfacing to schemas and subschemas to transform data

items between the end user view and the logical data unit view, and then

translating the parsed end user request into a sequence of commands to

back-end server machines.

The front-end client machine is also responsible for the error

handling associated with syntax checking and some semantic checking. The

semantic checkijg is to verify compatibility of the user request with data

types and integrity information stored in the schema and appropriate

subschemas. The client machine thus transforms the user request into a

"program" or sequence of messages instructing the back-end servers to

perform a sequence of actions on the actual database.

4.1.2 Back-end (Server) Functions

The back-end server irachines perform the traditional functions usually

associated with database management; that is, they perform actions on their

local database in a manner very similar to the way a conventional

centralized database manager would handle requests from terminals and other

remote users.

These actions include

o data retrieval

o update functions including

o updates in place of data items within a record

o insertions

i| o deletions

o changes in indices or access paths

9 manipulation functions

o locking of parts of the local database

o certain atomic macro operations such as increment a data item or

- 34 -



*-*.-. -. i -  
: / ; ' " / " ° i - - " " " - " - "

4 Back-end (Server) Functions September 1980

counter by one

CIn general the back-end data managers (servers) execute operations on

the database as a sequence of read, manipulate and write actions. (The

write and sometimes the manipulate actions can be omitted for strictly

query and reporting functions.) Local data items are normally locked from

the time of a read until the transaction accessing them has completed.

This "locking" may consist of a conventional lock preventing other

transactions from taking control of the data item or a more complex

"multiple version" scheme. The latter allows other transactions to proceed

but preserves old copies of modified data items so that conflicting

transactions can be backed out in a consistent manner. Both shared locks

(allowing other transactions to read but not to update the data item) and

exclusive locks are generally allowed.

For efficiency reasons atomic macro operations allowing reading,

manipulating and updating of data items at a single site as an indivisible

operation seem attractive. However, choosing just which macro operations

to allow is difficult and application dependent because of the need to

detect potential conflicts between transactions and compensate for them

through scheduling and/or aborting partially completed transactions.

4.1.3 Migratory Functions

The data access functions described above have an essential

commonality whatever the abstract level of the interface between client and

server. However, certain other functions (mostly concerned with data

transformations) can be placed in either the client or server to affect the

relative distribution of functionality between these pieces. We term these

services migratory functions.

Typical migratory functions include

* operations that transform data objects between higher and lower
levels of abstraction/representation

* commands that manipulate or change the value(s) of data objects.

-35-



Migratory Functions September 1980

Examples of transformation objects include:

* format and code conversions

e forming derived data items

* replacing pointers with the object pointed to

* data recombinations such as projections and joins

Data manipulation commands include operations such as:

e changes to data items within a logical data unit (such as

increasing a value by 10)

* computation of composite data items such as sums, counts,
subtotals, etc.

4.2 Global Data Manager

The most critical part of a distributed data sharing system is

probably the global data manager that is responsible for coordinating

resource allocation and data updates/access on different machines. The

global data manager (GDM) can be thought of as containing three parts:

* intra-transaction consistency control (coordination)

* inter-transaction consistency control (mediation)

* database oriented enhancements to the network to reliably support
the above requirements. (These enhancements deal mainly with
coordinating clocks and time stamps but may also include
mechanisms for guaranteeing the reliable transmission of messages
in the presence of component failure and some directory
functions).

This division is useful for conceptually differentiating between the

different tasks of the GDM. In addition, it provides a framework for

treating the design of GDM functional modules as separate problems and for

partitioning the distributed data management problem into separate

localized tasks. In particular, the intra-transaction coordination

mechanisms can usually be separated out into separate modules that can be

-36-



Global Data Manager September 1980

allocated on a per transaction basis and freed from concern about

interaction with other transactions.
I

4.2.1 Intra-transaction Consistency Control (Coordination)

Intra-transaction coordination functions generally fall into one of

three categories:

* access planning

e coordination (monitoring) of distributed query execution

e reliability mechanisms that ensure that either the entire
transaction is executed or none of it is.

4.2. 1. 1 Access Planning

The access planning function generally consists of the following six

steps:

1. determining where (on which nodes) copies of data to be accessed
are stored. (These copies constitute the transactions readset).

2. determining the most convenient copy of each data item to access
(when some data items are stored redundantly). This may involve
determining the order of evaluation of boolean expressions and
may depend on estimates of the relative frequency of occurrence
of different keys.

3. determining which parts of the user request can be executed in
parallel. This involves analyzing the dependency relationships
in Boolean expressions and other actions (such as following
pointer chains). The final determination may be data dependent
and involve several alternative execution paths.

4. determining the most appropriate machines to execute the p. as
of the transaction. This will, in general, depend on the
locations of data items, the processing power and special
facilities of the different nodes (including those needed to
support security requirements), the bandwidth of communication
links, and node and path utilizations. Resource utilization
information can be either dynamic (based on resource monitoring)
or static (sysgened into the system and updated offline). Steps
(2), (3) and (4) are interdependent and may have to be solved
iteratively or as part of a single algorithm.

- 37 -



! Access Planning September 1980

5. determining what data might be updated by the transaction (the

transaction's writeset. Each copy of data items in the writeset
must be locked or otherwise flagged to prevent access requests by
other transactions that could lead to inconsistencies. The
writeset of a transaction may later be refined during execution
to release data items that turn out not to be needed by the
transaction. (This may occur when the choice of which items to
update is determined dynamically during the course of the
transaction). Note that if all copies of the data to be updated

3are flagged (locked) in this stage, it is sufficient for only a
single copy to be flagged (locked) in step 1.

6. using the information gathered in steps (1) through (5) to set up
a "distributed program" to perform the user request on one or
more machines.

4.2. 1.2 Run-time Coordination

Coordination of distributed query execution entails initiating pieces

of the "distributed program" generated in the access planning stage on

appropriate server machines as the input data for each piece becomes

available and verifying their successful execution. This involves

e synchronizing the parallel sub-programs running on different

machines.

* supervising the transfer of information between subprograms

* refining the transaction's writeset (so as to release locks on
data that turn out not to be needed or to unflag data items if
the locking is done only when modified data is actually sent)

e monitoring network events (such as machine failures) that might
force changes in the transaction execution plan, and

e dynamically handling any errors that occur.

4.2.1.3 Intra-transaction Reliability Mechanisms

Various intra-transaction reliability mechanisms can also be

incorporated in the intra-transaction coordination function. The most

widely used of these is two-phase commit which can be implemented in a

variety of ways [Gray 78], [Rothnie 79], [Stonebraker 77]. The basic

principle is that either all database changes made by a transaction should

be incorporated into the database, or none should. Guaranteeing this

- 38 -



"-. ....

* Intra-transaction Reliability Mechanisms September 1980

entails making sure that all nodes have made whatever changes to data they

plan to in a separate work area prior to any node transferring modified

data back to the database. When it is verified that all data modifications

have been made, a commit message is sent to each node to allow its part of

the database to be updated.

Various algorithms are used to guarantee that all updates will be

incorporated in the database even if some nodes fail during the course of

the transaction. In general, the transaction will be completed if the

coordinating node stayed up long enough to send a commit message to at

least one other node; otherwise the transaction will be aborted and started

over from the beginning (or from a predefined checkpoint).

Recovery and verification of status is handled by a dialogue among

*nodes taking part in the transaction that are still operational.

4.2.2 Inter-transaction Consistency (Mediation)

Inter-transaction consistency control or mediation is probably the

most complex and least understood part of distributed data sharing systems.

The basic problem is to ensure that the effect of a group of transactions

executed in parallel is equivalent to executing the same group of

transactions serially (one at a time) in some order. This property is

known as serializability.

Serializability is not a problem as long as the transactions do not

access common data items (or access them in a read-only manner). Such

* transactions are said to be mutually transitive in the sense that the order

in which they are executed can be reversed or overlapped without affecting

the state of the database. However when two concurrent transactions wish

to update the same data item, or when one wishs to update a data item that

* a second transaction needs to read, there is a potential conflict that must

be resolved by the mediation mechanism. The inter-transaction concurrency

control mechanism resolves this conflict by arbitrarily forcing the

conflicting transactions to be serviced in some order. This order may use

* chronological time stamps, generalized time stamps (or transaction numbers)

that take into account explicit priorities, or a more complex token or

ticket based mechanism.

-39-

. . . .. . . . . . . . . . . . . . . . .-



Synchronization September 1980

4.2.2.1 Synchronization

A basic requirement for the correct operation of an inter-transaction

consistency control mechanism is the assignment of a unique global

identifier or time stamp or transaction number to each transaction in the

system. This time stamp must be unique across all parts of the network

which interact with the distributed data sharing system (DDSS) but does not

need to have any particular relationship to time in the conventional sense.

For example the generalized "time stamp" used by the DDSS may be sensitive

to priorities either directly or indirectly or may implicitly give higher

priorities to certain nodes by the preallocation of time stamps via a token

or ticket mechanism. There are usually significant performance advantages

to having the time stamps correspond fairly closely to real time since

transactions with later time stamps (higher transaction numbers) must wait

for earlier transactions to be completed before they can be finalized (or

completed) themselves.

Perhaps the simplest implementation of unique global time stamps is

the mechanism proposed by Lamport [Lamport 78). It entails assigning a

unique node number to each node (or transaction generator) in the system

and concatenating the appropriate node number with the local clock time to

form the global time stamp for transactions generated at that node. This

method requires that no more than one transaction be initiated at any given

node between any two clock ticks.

It is usually convenient to combine this approach of time stamping for

transaction synchronization with a mechanism for processor synchronization

so that time stamped messages tend to arrive at data handlers in roughly

time stamp order. Such mechanisms usually entail forcing null messages

from nodes which would otherwise generate very sparse traffic and forcing

nodes to move their clocks ahead whenever they receive a transaction with a

later time stamp (transaction number). This last technique might be called

the "fastest clock drives the network" approach and seems more viable when

the DDSS clock gives the transaction (and indirectly the database version)

number rather than an approximation to real time. It tends to keep the

clocks or priority ticket allocations at the different nodes of the system

roughly in synch.

-40 -



Synchronization September 1980

An alternative to the Lamport approach is to force the transactions

into a global serial order via a circulating token or ticket allocation

scheme for transaction numbers. Workers at IRIA [LeLann 77) [LeLann

78) [LeBihan 80) have proposed doing this by organizing the nodes

generating transactions into a logical virtual ring.

A control token or sequencer circulates around the ring. When a node

has control of the token it may take a certain number of tickets that

correspond to transaction numbers or time stamps and assign these to

transactions that originate at that node. The number of tickets a node

*should grab is the crux of the algorithm and an important design decision.

Possibilities include:

- . taking time stamps only for transactions already initiated at
that node but still awaiting time stamps, and

* various schemes that involve taking more time stamps or tickets
than are immediately needed so that new transactions that are
initiated before the token returns can receive a time stamp
without delay.

The trick in the later case is to assign "future time stamps", i.e.

tickets, with transaction numbers a certain distance into the future

leaving a gap of numbers for assignment to transactions that have already

started at other nodes. Just how large these gaps should be and how many

tickets should be allocated in this way is a crucial performanc- problem

that seems to be very application dependent.

O 4.2.2.2 Locking Mechanisms

There a'e two basic approaches to enforcing time stamp order on

database accessing:

* locking a data object while it Is being updated or read

" maintaining multiple versions of data objects being updated.

Locking an object at a single node is the conventional way of

serializing concurrent operations that may conflict. (Note that we talk

. -41 -



3 Locking Mechanisms September 1980

about locking data objects rather than data items to make the discussion

independent of the granularity of locking chosen.) Two types of locks are

normally required:

o exclusive locks for write access

* shared locks for read access. The second type of lock has the
principal effect of preventing other transactions from obtaining
a write lock on the object.

The generalization to locking objects that are stored redundantly at

several nodes involves complex issues and allows a large number of

alternative approaches. These include using:

o a centralized lock manager that sets and releases all locks for
the entire DDSS. This is the simplest to implement, but not
always the most efficient.

o distributed lock managers at each site but with all lock and
release requests for any given object routed through a primary
site. The copy of the data object at that site is called the
primary copy of the object. The primary site lock manager is
responsible for controlling the locking and releasing of
duplicate copies of objects it controls located at other sites
through a message dialogue with the local lock manager at those
sites.

o distributed lock managers with symmetric allocation of control.
Consistency between locking states at different nodes is
guaranteed by the protocol or message exchange between nodes
rather than by a module at any one site.

o distributed symmetric lock managers with voting. This is a
variation of the previous method that allows locks to be
granted/released even if some of the nodes that contain copies of
the data object are inaccessible because of either node or
network failure. Thomas [Thomas 793 has shown that this can be
done consistently as long as a majority of the nodes with copies
of the data object participate in the dialogue.

4

- 42 -



Multiple Version Approaches September 1980

4.2.2.3 Multiple Version Approaches

U. An alternative to locking data objects being updated is to allow

simultaneous access to a data object by multiple transactions but to

maintain multiple versions of that data object so that all transactions

accessing that object see a consistent version of the database. This

Iapproach generally requires attaching a time stamp to each data object in

the database (or at least to those "currently" being dealt with). This

introduces significant storage overhead in some cases. An optimization

proposed by Thomas [Thomas 79] maintains time stamps only for active data

objects and purges old time stamps when it is clear that there is only one

version of the object currently active in the system (i.e. no updates

• :against that object in progress). Old versions of data objects can be

purged from the system when it is determined that there are no longer any

transactions in the system that might access them. A newer and possibly

more efficient variation on this has been proposed by Takagi (Takagi 79].

Multiple version schemes effectively assign a new version of the data

base to each transaction corresponding to the state the database will be in

when that transaction is completed. These versions might be conveniently

identified by the transaction number. When a trarsaction wishes to update

a data object being accessed by another transaction, a new version of that

data object (and implicitly a new version of the database) is created. If

no conflicts arise between the updates being performed by the concurrent

transactions, both results are kept in the database and older versions are

eventually deleted. If a conflict arises then the later transaction (and

.4 all transactions dependent on it) are backed out and restarted using new

values introduced into the data object by the transaction with the earlier

time stamp.

Multiple version approaches seem attractive when a large proportion of

database transactions are read-only queries or report requests and/or when

predeclarations are used to reserve a larger area of the database than is

actually read or modified. Queries and report requests can often be

satisfactorily serviced by processing them against a slightly outdated

version of the database; this may often be preferable to the degradation in

response time that would be caused by waiting for all updates in progress

43



Multiple Version Approaches September 1980

to quiesce to a consistent state.

Similarly it may sometimes be more efficient to proceed with an update

transaction using an older version of some data object on the assumption

that any changes being made to that data object by other transactions will

not affect the results of the first transaction. This seems likely to be

true when the granularity of both objects being time stamped is large

relative to the data object actually being updated.

The actual performance tradeoffs between pure locking mechanisms and

multiple version approaches are complex, application dependent and

dependent on the workloads at the various nodes as well as the

characteristics of the database.

There are two principal types of mediation which the GDM must perform

between operations of different transactions.

e write-write mediation where 2 different transactions wish to
update the same data item,

9 read-write mediation where one transaction wishes to access a
data item being updated by a second transaction

Read-read mediation involves no conflict but probably forces the GDM to

maintain use counts (or use lists) on data items to keep track of how many

(and which) transactions are currently accessing them.

It has been argued that different algorithms could be used for the two

subproblems, possibly encompassing a combination of pure locking and

multiple version approaches. However, it becomes crucial to assure the

mutual compatibility of the group of algorithms eventually chosen and the

performance analysis of such systems is far from simple. Some of these

tradeoffs have been discussed by [Badal 80] and (Bernstein 78).

-44 -



. .. .. , . . . . .... - - . . ..... .- . .'- ,. ,:-- 
-_ 

.'- - o- '... ..L - .. -- -. -... . .'-'- " .' -

Deadlock Control September 1980

4.2.2.4 Deadlock Control

13 Another important part of inter-transaction consistency control is the

deadlock control mechanism. wo basic approaches can be used:

* deadlock avoidance

9 deadlock detection and resolution, which implies the ability to

cancel and back out of a transaction.

There are a number of ways to guarantee that a resource allocation

mechanism will be deadlock free, but it is difficult to apply these

techniques to data sharing systems. The basic requirement is to allocate

all resources (or data objects to be locked) at once or in batches arranged

in some hierarchical order. A problem is that it is not always possible to

know in advance all data items that will be accessed by a transaction. In

particular, the first part of a transaction may determine what data items

are to be read or updated in the second part. Preanalysis plus

overcommitting of resources (by locking on a larger part of the database

than is actually needed) can get around this problem, but usually imply

severe performance penalties. These may be at least partially obviated by

multiple version consistency schemes. In addition, it is questionable

whether there is a useful way to partition a database into a hierarchical

order for purposes of locking on data objects in most applications.

Deadlock detection and resolution is an alternative approach which has

been successfully used in Distributed Ingres [Stonebraker 78]. Roughly

* the same basic approaches to division of control can be used for deadlock

detection as for consistency control. These include:

e centralized deadlock detentionU
& an hierarchical form of deadlock detection where deadlocks are

tested for in subnetworks with many interactions prior to being
tested for in more loosely coupled parts of the network

e distributed deadlock detection algorithms which depend on a
dialogue between deadlock detectors at each node to determine
confl icts

-5-



- - - - • - . , .: , , . 4 - °, 4 . . o . . . , .

Deadlock Control September 1980

A wait for graph is sometimes used to indicate which transactions are

3waiting for each other and thus potentially in conflict.

4.2.3 Fault Tolerance

Intra- and intertransaction control mechanisms need to be supported by

network facilities to ensure reliable and timely delivery of messages. The

basic requirement is to guarantee correct and in sequence delivery of

messages between any two nodes. This is to some extent supported by the

message level windowing between socket connections in networks such as

ARPANET. Other networks may require special sequencing and flow control

facilities be implemented as support functions within the data sharing

system itself.

In addition a spooling and forwarding facility is required to ensure

that messages sent to a node that is temporarily down or disconnected from

the network can be delivered to it in the correct order when it comes up or

rejoins the network. 1ultiple spoolers can be implemented to provide a

backup if the node containing a spooler goes down prior to delivering its

log of messages.

Various majority consensus type voting schemes have been proposed

[Thomas 79J to allow a DDSS to continue to operate when the system is

partitioned into two or more parts due to network failure. However there

is very little experience with these techniques in practical situations,

and systems such as SDD-1 still require manual intervention to deal withC
the problem.

4.3 Summary

An overview of the pieces of the global data manager and how they are

related is shown in figure Figure 4-2.

The question sometimes arises of how to distribute the Global Data

C Manager functions between client and server parts of a distributed data

sharing system. It is conceptually useful to regard the GDM as a separate

entity implemented in a distributed fashion. However, for purposes of

implementation it seems practical to distribute transaction dependent

41



p~1: • .•

I T  
' ' ..

4

GLOBAL DATA MANAGER

FUNCTIONS FUNCTIONS
INPLEMENTED t. IMPLEMENTED
SESSION ANDG A DAT REMOTE
TRANSPORT RESOURCE
(HOST-TO-HOST) ACCESS
LEVELS LEVEL

FUNCTIONS TO SUPPORT GLOBAL INTRA TRANSACTION
FAULT TOLERANT DIRECTORY CONTROL FUNCTIONS
MESSAGE TRANSMISSION SYSTEM

IN SEQUENCE SOI OF NE ORK ACCESS COORDINATION INTRA-TRANSAC'
DELIVERY OF MESSAGES TO PARTITION PLANNING OF DISTRIBUTED RELIABILITY
MESSAGES ON NODES NOT DETECTION QUERY MECHANISMS
ANY SESSION CURRENTLY AND EXECUTION
CONNECTION AND ACCESSABLE RECOVERY
ON ANY HOST TO
HOST CONNECTION

MULTIPLE INTEGRITY LOGGING 2-PHASE
SPOOLING (IN CONSTRAINTS AND COMMIT
CASE THE-FIRST AUDIT
SPOOLER NODE TRAITS
CRASHES BEFORE
MESSAGES ARE
DELIVERED)

A

*1

d~n..



t q7 7 7r '-*7

5 L

:ON~i-L FUCTION CONTFLUNCTTION

aMOI'RATO ITATRANSACTIONSYCRNZTO INTER-TRANSACTION DALC

O)F DISTRIBUTED RELIABILITY FUNCTIO S CONFLI TCONTROL CONTROL
.UERY MECHANISMS
XECUTION

/N

INTEGRITY LOGGING 2-PHASE PROCESS 2-PHASE MULTIPLE AVOIDANCE DETECTION
*CONSTRAINTS AND) COMMIT SYNC RONIZATION LOCKING VERSICN AND

AUDIT PROES0 ALGORITHMS RESOLUTION a

TRAITS SYNCHRONIZATION

UNIQUE GLOBAL NETWORK
TIMESTAMPS ON VIRTUAL
TRANSACTIONS CLOCK



Summary September 1980

:I

Figure 4-2: The Subfunctions of the Global Data Manager

H -47-

I.



0 Summary September 1980

functions among the client parts of the system and data copy dependent

functions among the servers.

Functions designed to ensure reliable receipt of messages and other

network recovery functions probably are required at each node (whether it

is a front-end client, back-end server, or combination containing the

functionality of both).

4

- 48 -



. . - -. - .- . .. -; < .. . :. - .- .. .. -.. -. -... ....- .. ... . .- .. .. . .. ... . .- .. . , . . . .

Conclusion September 1980

5 Conclusion

This report describes a new formal reference model for distributed

data sharing that generalizes on conventional reference models for DBMSs

P| (such as Senko's DIAM II model [Senko 75)) in the following ways:

9 It extends conventional notions of data modelling to incorporate
issues related to sharing data across the nodes of a network. It
does this in a manner that treats data modelling issues and
consistency - remote access issues as separate dimensions of the
task of sharing distributed data.

9 It extends the levels of the DIAM II model (which describes DBMS
architectural levels) by incorporating two lower levels (for
physical block and device access) and one higher level (for
composite data types and applications). This is useful for
presenting a unified discussion that spans both distributed DBMSS
and distributed file systems.

This produces an integrated reference model (for distributed

processing) that divides DBMS functionality into client (front-end), server

(back-end) and global data manager (distributed data sharing) parts. The

division between client and server (front-end and back-end) is kept

flexible by making the level of data abstraction for the interface between

front and back-end parts a parameter of system design. This allows our

reference model to be applicable to a wide assortment of distributed DBMSs

and distributed file systems that support vastly different data models.

It is hoped that treating both types of systems in a uniform manner
will make it easier to recognize functional similarities between systems

and design portable components. This could make it possible to design

future data sharing systems starting from a basic template and tailoring

the systems for specific needs by appropriate choice of parameters and

algorithms. It may also lead to greater interchangeability of functional

components as the common nature of functional modules in distributed data

sharing systems becomes more evident.

This type of approach can be of use to the Navy in the following ways:

4~-49 -



" Conclusion September 1980

- It provides a framework for analyzing how existing systems
(especially systems which contain separate small data bases or
files) can be integrated together into distributed or federated
systems. This integration can be performed even if the files and
databases support different data models and use interfaces at
different levels of abstraction.

- It provides a way of developing standard interchangeable
components to ci:,pport specific functions. This can lead to more
modular system hat are easier to maintain. It may also allow
the more rapid introduction of more efficient and more reliable
algorithms since the functional units that incorporate them will
be treatable as separate modules. In particular the functional
division between data sharing and data accessing components of
the system may facilitate greater interchangeability of data
sharing algorithms among systems which use different data models.

The above two considerations tend to decrease both system cost and the

lead time needed for the introduction of' new capabilities. in addition

r distributed systems can be designed to be more reliable and available than

single node systems by making use of hardware and data redundancy to

support continued system operation in the presence of individual component

failures.

Three areas in particular seem to warrant further study as possible

extensions of this model. These are:

* integration of this data model with a standard network layering
such as that proposed in the ISO Open Systems Architecture.

o the use of this type of model as an aid to the design of global
data managers that handle the interfaces between client packages
(application programs and end users) and an assortment of
back-end (server) data base managers and file systems.

e the usQ of this model as a conceptual basis for the performance

modelling of distributed data management.

- 50 -



j .7.

- References September 1980

6 References

[ANSI/X3/Sparc 75]
ANSI/X3/SPARC Study Group on Data Base Management Systems.
Interim Report.
FDT (ACM SIGMOD) , February, 1975.

[AOS 77] Advanced Operatin System (AOS) Programmer's Manual

093-000120-01 edition, Data General, 1977.
[Badal 80] Badal, D.Z.

The Analysis of the Effects of Concurrency Control on
Distributed Data Base System Performance.

In Sixth International Conference on Very Large Data Bases.
IEEE, October, 1980.

-Banerjee 78] Banerjee,J., BauAn,R.I., and Hsiao,D.K.
Concepts and Capabilities of a Database Computer.
Transactions on Database Systems 3(4), December, 1978.

[Banerjee 79] Banerjee,J., Hsiao,D.K., and Kannan,K.
DBC - a Database Computer for Very Large Databases.
IEEE Transactions on Computers c-28(6), June, 1979.

[Bernstein 78] Bernstein, Philip, Rothnie, James, Goodman, Nathan, and
Papadimitriou, Christos.
The Concurrency Control Mechanism of SDD-i: A System for

Distributed Databases (The Fully Redundant Case).
IEEE Transactions on Software Engineering SE-4(3), May,

1978.
[Bernstein 79] Bernstein, P.A., Shipman, D.W. and Wong, W.S.

Formal Aspects of Serializability in Database Concurrency
Control.

- IEEE Transactions on Software Engineering SE-5(3), May,
1979.

[Berra 79] Berra,P.Bruce and Oliver,Ellen.
The Role of Associative Array Processors in Data Base

Machine Architecture.
* Computer , March, 1979.

[Blake 79) Blake,Russ.
Tailor: a Simple Model that Works.
In Proceedings of' the 1979 Conference on Simulation,

Measurement and Modeling of Computer Systems.
ACMSigmetrics", August, 1979.

O ACM Sigmetrics Performance Evaluation keview Vol. 8, Nc.>.
[Canaday 74) Canaday,R.H., Harrison,R.D., Ivie,E.L., RyderJ.L. and

Wehr,L.A.
A Back-end Computer for Data Base Management.
Communications of the ACM 17(10), October, 1974.

[Chen 76] Chen, Peter P.-S.
The Entity-Relationship Model - Towar a Unified View of

Data.
Transactions on Database Systems , March, 1976.

[Cullinane 79] Cullinane Data Management System (CDMS)

-51 -



ReferencLs September 1980

Cullinane Corporation, Wellesley, Mass., 1979.

(Date 75] Date, Christopher J.

An Introduction to Database Systems.

Addison-Wesley, 1975.

S[Gray 78) Gray,J.N.

Lecture Notes in Computer Science. Volume 60: Notes on Data

Base Operating Systems.
Springer Verlag, 1978,

[Hsiao 79] Hsiao, David.

Collected Readings on a Database Computer (DBC).

Technical Report, Chio State University, 1979.
[Israel 78) Israel, Jay E.. Mitchell, James G., and Sturgis, Howard E.

Separating Data from Function in a Distributed File System.
Technical Report CSL-78-5, XEROX PARC, September, 1978.

[Lam 78] Lam,Chat-Yu and Madnick,Stuart.

INFOPLEX Data Base Computer Architecture - Concepts and
Directions.

Technical Report, MIT Sloan School Center for Information

Systems Research, 1978.
[Lamport 78] Lamport, Leslie.

Time, clocks and ordering of events in a Distributed System.
Communications of the ACM 21(7), July, 1978.

[Lebihan 80) Le Bihan, J.; Esculier, C.; Le Lann, G.; and Theille, L.
Sirius-Delta: a Distributed Data Base Management System

Prototype.
North Hoblland, 1980,

[LeLann 77] Le Lann, Gerald.
Introduction a l'analyse des systemes multireferentiels.
PhD thesis, Universite de Rennes, May, 1977.
Document SIRIUS CTR.I.004.

[LeLann 78) Le Lann, Gerald.
Algorithms for Distributed Data-sharing Systems which Use

Tickets.
In Proceedings of the Third Berkeley Workshop on Distributed

Data Management and Computer Networks. Lawrence Berkeley

Laboratory, University of California, berkeley, 1978.
[Madnick 75) Madnick, Stuart E.

INFOPLEX - Hierarchical Decomposition of a Large Information
Management System using a Microcomputer Complex.

In National Computer Conference. AFIPS, June, 1975.
[Madnick 79] Madnick, Stuart E.

INFOPLEX - Data Base Computer Architecture.
* In Compcon Spring 79. IEEE Computer Society, March, 1979.

[Mager 80] Mager, Peter S. and Goldberg, Robert P.
A Survey of Some Approaches to Distributed Data Base and

Distributed File System Architecture. -- -

Technical Report TR-80-O01, BGS Systeins,lnc., Waltham,
Masz., January, 1980.

* (Martin 77) Martin, James.
Computer Data-Base Organization.
Prentice Hall, Englewood Cliffs, NJ, 1977.
2nd edition.

[Paxton 79) Paxton, William H.

- 52 -



References September 1980

A Client-Based Transaction System to Maintain Data
Integrity.

In Proceedings of the Seventh Symposium on Operating System
Principles, Pacific Grove, California. ACM (SIGOPS),
December, 1979.

(Rothnie 77] Rothnie, James B. and Goodman, Nathan.
A Survey of Research and Development in Distributed Database

Management.

In Proceedings of the Third International Conference on Very
Large Data Bases. IEEE, 1977.

[Rothnie 79) Rothnie, James B., Jr., Bernstein, Philip A., Fox, Stephen
A., Goodman, Nathan, Hammer, Michael M., Landers, Terry A.,
Reeve, Christopher, L. Shipman, David W., and Wong, Eugene.
SDD-1: A system for Distributed Databases.
Technical Report CCA-02-79, CCA, August, 1979.

(Schneider 75) Schneider, L.S. and Spath, C.R.
Quantitative Data Description.
Technical Report, Martin Marietta Corporation, 1975.

[Senko 75] Senko, Michael.
Specification of Stored DLta Structures and Desired Output

Results in DIAM II with FORAL.
In Proceedings of the First International Conference on Very

Large Databases. ACM, September, 1975.
[Sockut 77) Sockut, Gary.

Data Base Performance under Concurrent Reorganization and
Usage.

PhD thesis, Harvard University, July, 1977.
[Stonebraker 77]

Stonebraker ,Michael.
A Distributed Data Base Version of INGRES.

In Proceedings of the Second Berkeley Workshop on
Distributed Data Management and Computer Networks.

Lawrence Berkeley Laboratory, University of California
Berkeley, August, 1977.

[Stonebraker 78)
Stonebraker, Michael.
Concurrency Control and Consistency of Multiple Copies of

Data in Distributed Ingress.
In Proceedings of the Third Berkeley Workshop on Distributed

Data Management and Computer Networks. Lawrence Berkelcy
Laboratory, University of California, Berkeley, 1978.

reprinted in IEEE Transactions on Software Engineering, Vol.
SE-5, No.3, May 1979.

[Stonebraker 79)

Stonebraker, Michael.
MUFFIN: A Distributed Data Base Machine.
In Proceedings of the First International Conference on

Distributed Computing Systems, Huntsville, Alabama. TEEE
Computer Society, October, 1979.

[Swinehart 79] Swinehart,Daniel; McDaniel,Gene; and Boggs,David.
WFS: A Simple Shared File System for a Distributed

Environment.
In Proceedings of the Seventh Symposium on Operating System

- 53 -



References September 1980
I.

Principles, Pacific Grove, California. ACM (SIGOPS),
December, 1979.

[Takagi 79) Takagi,Akihiro.
Concurrent and Reliable Updates of Distributed Databases.
Technical Report TM-144, MIT LCS, November, 1979.

(Thomas 79) Thomas, R. H.
A Majority Consensus Approach to Concurrency Control for

Multiple Copy Databases.
Transactions on Database System-. 4(2), June, 1979.

[VM/370 77] IBM Virtual Machine Facility/370: System Programmer's Guide
GC20-1807-6 edition, IBM, 1977.

[Watson 80] Watson, Richard W.
Network Architecture Design for Back-End Storage Networks.
Computer (2), February, 1980.

54

- 5J44



w i


